

FoodChain-Lab: Tracing software supporting foodborne disease outbreak investigations

<u>Armin Weiser</u>, Christian Thöns, Alexander Falenski, Matthias Filter, Annemarie Käsbohrer, Bernd Appel

Outline

Introduction

- FoodChain-Lab
 - Data Collection
 - Analysis and Visualization
 - Live

Outlook

FoodChain-Lab – ad hoc

Weiser et al., 2013: "Trace-Back and Trace-Forward Tools Developed Ad Hoc and Used During the STEC O104:H4 Outbreak 2011 in Germany and Generic Concepts for Future Outbreak Situations", **Foodborne Pathog Dis. 2013**.

Outbreak Scenario 1:

Restricted to one Location

- Often caused by mistake during food preparation
- Acute outbreak
- High dose
- High infection rate
- Local investigation

Outbreak Scenario 2:

Affecting Multiple Locations/Countries

- Contamination during production/processing
- Diffuse distribution of cases
- Low dose
- Low infection rate
- Complex investigation

The outbreak investigation team see:

Cases

What is FoodChain-Lab?

- Open source software
 - https://foodrisklabs.bfr.bund.de
- Database for managing food tracing data
- Tool for data cleaning, enrichment & processing
 - Validation (also online: https://foodrisklabs.bfr.bund.de/templatevalidator/)
 - Cleaning (e.g. Duplicate Detection)
 - Enrichment (e.g. Geocoding)
 - Analysis (Clustering, Tracing, Scoring, etc.)
- Tool for visualization and interactive reasoning

Database – Structure for Food Chains

Principle of tracing back – Data gathering

Principle of tracing back – Data gathering

Data gathering – Development of a new "simple" template

"one step back-one step forward"principle of REGULATION (EC) No 178/2002, Article 18

->

Endless supply chains with arbitrary complexity realizable

new:

FoodChain-Lab

Data cleaning

Levenshtein distance

Works well for finding typos

FoodChain-Lab

Data Enrichment – Geocoding

Available Providers:

- (Google)
 - Web service
- MapQuest
 - Web service on open data
- Gisgraphy
 - Locally installable
 - **Confidentiality** of data ensured!
 - No request limit!

Station

Products

P.O. Box

Zip Code

County Country

House Number

FoodChain-Lab Scoring

Definition:

Trace = path, a contamination can take via the food chain network

- Visualization of backward / forward "trace"
- Simulations based on
 - Cross Contamination
 - Regional Effects (e.g. environmental contamination)
 - Weights for Outbreak Stations
- Tracing score as simulation result
 - ~ likelihood a station is involved in the outbreak

Math: $Score(s_i) = \frac{\sum_{j=1}^{n} w_j t_{ij}}{\sum_{j=1}^{n} w_j t_{ij}}$ Score(s_i) Station i w_j : Weight of station j t_{ij} : 1 if there is trace from station i

$$core(s_i) = \frac{\sqrt{1-s_i}}{\sum_{i=1}^{n} w_i}$$

n: Number of stations

0 otherwise

BfR

FoodChain-Lab

Data visualization of Traces

Traces of the products of the blue station. All 3 outbreak stations (red) are reached by the forward trace (green).

FoodChain-Lab

(Geo-) cluster analysis

Synchronized network- and map-view.

Manually or automatically defined regions may be treated as one station. This allows analysis of regional causes of the outbreak...

Real world applications

Live...

https://foodrisklabs.bfr.bund.de

FoodRisk-Labs Powered by

FoodRisk-Labs is a portal

to the following tools

developed by the Federal Institute for Risk Assessment (BfR):

Outlook Software

Automation

Simulations for various parameters

Integration

- Further tools: FoodProcess-Lab, Pmm-Lab, ...
- Further data: Sample analysis data from laboratories, ...

Simplification

- Data collection
- Handling

Other

- Improved Layouts
- New Retrospective features
- Support, bug fixes, documentation

0 ...

Outlook Strategy

- Special enhancements on data gathering
 - Centralizing / Cloud service (but still usable for decentral units)
 - Direct on-site data gathering, e.g. via Tablet/Phone
 - Establish data exchange formats between authority -> authority and business -> authority
- Dissemination
 - Workshops with the motive "Train the trainer"
 - MS of EU
 - Other parties?
 - Every day usage? Further application areas?
- Realize (pilot) projects with potential stakeholders?
- Do we need a "Rapid Deployment Team"?

Thank you for your attention

Armin Weiser

https://foodrisklabs.bfr.bund.de

Federal Institute for Risk Assessment

Max-Dohrn-Str. 8-10 • 10589 Berlin, GERMANY

Tel. +49 30 - 184 12 - 0 • Fax +49 30 - 184 12 - 47 41

foodrisklabs@bfr.bund.de • www.bfr.bund.de