

Bundesinstitut für Risikobewertung

Investigating an outbreak in 10 steps ...opportunities to trace food Katja Alt

Armin Weiser Olaf Mosbach-Schulz

Outline

- Learning objectives
- Types of outbreaks with focus on food borne outbreaks
- 10 steps of an outbreak investigation
- Wrap up

Learning objectives

- Get familiarized with
 - common sources for outbreak detection
 - the basic principles of field epidemiology
- How to investigate an outbreak in a structured manner
 - Starting from the public health side
 - Considering interfaces with food / feed safety side
- When would tracing make sense? In which not? Elaborate on the way

Some general remarks/definitions first...

- Epidemic = outbreak
- <u>Prevalence</u> of disease = number of diseased individuals
- <u>Incidence</u> = **new** cases of a disease within a defined population over an established **period of time**
 - Epidemic = excessive incidence in defined

population,

place and

time

- Epidemics...
 - often evolve rapidly
 - are Public Health emergencies

Types of outbreaks

- Depend on transmission routes defined by
 - Pathogen characteristics
 - Host characteristics (behaviour)

Common source outbreaks

- Single or point source
- Continuous or multiple exposure outbreaks

Propagated outbreaks

- Person to person (Influenza, HIV...)
- Arthropod vector (Malaria, Dengue...)
- Animal reservoir

Slow (modern) outbreaks

...of non-communicable diseases: eg. diabetes, heart attacks, depression

FBOs

Types of outbreaks related to food

- Common source & single exposure outbreaks
 - Single source exists for a <u>short time period</u>
 - All cases have a <u>common exposure</u> a that particular time
 - First and last case within incubation period
 - Rapid rise and rapid decline in epicurve
 - Examples: food poisoning (street vendors, feasts, etc)

Types of outbreaks related to food

- Common source & multiple exposure outbreaks
 - Single source exists which provides intermittent exposure
 - Rapid or moderate peaks during extended time periods
 - Multiple foci / disease clusters
 - Example: pig farmer producing intermittently contaminated pork (eg. Salmonella)

Why investigate outbreaks?

They won't go away if we ignore them

- Ebola, HIV...
- To gain **practice**: what happened once may happen again
 - Natural experiments we can use for training
- To define the **magnitude**
- To determine conditions & factors responsible
- To identify the **source**
- To recommend **prevention** measures

Who investigates outbreaks?

- In DE described within the infection protection law:
 - Federal states are in charge of public health & safety
 - If >1 state affected national authorities take over, primarily to coordinate!
- Outbreak investigation team (OIT)
 - Epidemiologists
 - Representatives of affected jurisdictions / health care facilities
 - Microbiologists, clinicians, veterinarians
 - ...other specialists as required
- Similar applies to multinational outbreaks (COM coordinates)

• Before start:

– Briefing of members of OIT on roles & responsibilities

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses

- 6. Test hypotheses based using analytical epidemiology
- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

With potential dead ends at many stages!

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology

Page 12 **BFR**

- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

- Definition of an outbreak:
 - Increased incidence (new cases) in a place at a given time
 - i.e. more than you would expect
- Elements needed:
 - Numerator
 - Number of cases
 - Denominator
 - Size of the population where cases come from
 - Collection of this information over time
 - Baseline data

Outbreak of Cyclosporiasis, United States, 2013*

Outbreak of *Salmonella* Heidelberg Infections Linked to a Single Poultry Producer — 13 States, 2012–2013

- Pseudo-outbreaks
 - No recent increase of incidence

Any ideas?

- Pseudo-outbreaks
 - No recent increase of incidence
 - Artifacts in the <u>numerator</u>:
 - Increased awareness (Campylobacter 2011)
 - Change in surveillance practices (case definition)
 - Laboratory error
 - Variation of the <u>denominator</u>:
 - Rapidly changing population denominators
 - Hospital patients, migrants, refugees, mass gatherings

Most outbreaks are detected by routine surveillance

Outbreaks with hundreds of ill persons can be missed if they are spread out over a wide area

- Who might detect and report outbreaks?
 - Microbiologists (labs with bigger catchment area see more)
 - Directors of long term care facilities, schools, …
 - Clinicians
 - Public
 - Hotels, cruise ships ...
 - Media
 - ?

Food/feed safety partners often not primarily involved at this step (public health competence)

Katja Alt, Baltic Countries 2016, Crisis preparedness 03.14 – 17.2015

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology
- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Step 2: confirm the diagnosis

A 2-stage process

- 1. Clarify the syndrome and <u>identify possible diagnoses</u>
 - Communicate with clinicians, specialists
 - Examine the frequency of symptoms among cases
 - Outbreaks of the same nature may look different
- 2. <u>Confirm</u> diagnosis with laboratory tests
 - Discuss best tests to use with lab and clinicians
- Don't test for everything because you might find everything
- Guidelines for Confirmation of Foodborne Outbreaks (eg. CDC)
- Food/feed safety partners often not primarily involved at this step (public health & microbiologists competence)

Symptoms reported by cases among wedding attendees, Camberley, 2011

- This could be anything
- At the end it was *C. jejuni*

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses based analytical epidemiology

Page 22

- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Step 3: define a case (by time, place, person)

Standard case definition

A case is the occurrence of [spell out syndrome] in a resident of [spell out location] between [beginning date] and [end date] (+/- [lab confirmation])

- Use of standardized syndromic case definition
 - National reference
 - > WHO
 - > ECDC
 - > Others (e.g., CDC)
- Food/feed safety partners often not primarily involved at this step (public health & microbiologists competence)

Katja Alt, Baltic Countries 2016, Crisis preparedness 03.14 – 17.2015

Step 3: define a case

Defining a case is like preparing to go fishing

- Different levels of case definition allow:
 –Searching for potential cases widely
 –Narrowing the search subsequently
- Case definitions may <u>differ at various stages</u>
 - -Descriptive stage (Case-finding)
 - More **sensitive** (e.g., diarrhoea and vomiting)
 - -Analytical stage (Hypothesis testing)
 - More **specific** (e.g., diarrhoea and vomiting + laboratory confirmed *Campylobacter jejuni*)

Example case definition: Multistate HAV-outbreak, Europe 2013 – 2014

- Stage of investigation: case finding
 - Aim: establish magnitude of outbreak (descriptive)
- Different levels
 - Confirmed case
 - Probable case
 - Exclusion criteria
- Additional definitions for food trace back
 - Secondary case
 - Travel-related case

Case definition with different levels: Multistate HAV-outbreak, Europe 2013 – 2014

- Confirmed case
- a) EU/EEA resident with laboratory confirmed HAV genotype IA
 and

b) date of symptom onset $\geq 01/01/2013$

and

c) at least one of 3 conditions related to genotype of virus

• Probable case

a without genotype restriction) + b) + **exposure**:

Within 15-50 d before onset

c) having been in a country experiencing the outbreak during the indigenous outbreak period **and/or**

d) person-to-person contact with a confirmed case (secondary case)

Case definition:

Multistate HAV-outbreak, Europe 2013 – 2014

- Probable case <u>exclusion criteria</u>:
 - a. other genotypes than IA outbreak strain
 - b. travel outside EU within 15-50 d before onset
- Cases to exclude for **trace back** purposes:
 - A <u>secondary</u> case:

a person with no reported exposure to berries (acquired infection via person-to-person or unknown)

• A <u>travel-related</u> case:

a person with a history of travel abroad 15 to 50 days prior onset of symptoms.

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology

Page 28 **F**

- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Step 4: search for cases

Now you actually go fishing

- Time, place and person criteria
 From case definition (for case searching stage!)
- Chose a <u>uniform</u> strategy to search for cases
 - Passive (routine) surveillance
 - Reports coming to surveillance unit (eg. public health institute)
 - Stimulated passive surveillance
 - <u>Alert</u> clinicians, microbiologists, known members of population at risk to trigger reporting
 - Active surveillance
 - Direct search of medical records
 - Door-to-door/media case search

Genuine competence of public health authorities

The line listing

Constitutes and updates a database of cases

✓ Protects the **confidentiality** of the patients

Prepares automated descriptive analysis

Katja Alt, Baltic Countries 2016, Crisis preparedness 03.14 – 17.2015

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology
- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Step 5: generate hypotheses

...by using time, place, person

Cases of an Unknown Disease by Month of Onse

Jun Jul Aug Sep Oct Nov Dec

- Time
 –Epidemic curve
 - Place –Spot map –Incidence by area

Paran Paran

- Person
 - -Incidence by age, sex, etc.
 - -Trawling questionnaire of cases
 - -Interview of outliers

The epidemic curve: EHEC outbreak, DE 2011

• Epicurve by sex shows unequal distribution: more females affected

Katja Alt, Baltic Countries 2016, Crisis preparedness 03.14 – 17.2015

Page 33

Incidence map: EHEC outbreak, DE 2011

 Epicentre of outbreak in northern Germany

Step 5: Generate hypotheses

...by using time, place person

• Trawling interviews of cases:

- -open ended, generic questionnaires for case-patients
- -objective: Identify what is **common** to all the cases
 - Event they participated in?
 - <u>Place</u> they visited?
 - <u>Behaviour</u> they have in common? Eg. exposure to food
 - Don't generate risk associations \rightarrow investigators decide
- > via telephone or in person by trained interviewers
- very time consuming
- > Crucial: investigation will focus on the outcome!

Step 5: Generate hypotheses

Hypothesis testing example:

- Trawling interviews of patients in Hamburg, 2011 yielded
 - Food item contaminated with *E. coli* O104:H4 is probably the vehicle
 - Normally with EHEC associated food items as row meat, raw milk or sprouts are unlikely vehicles
 - Information points towards fresh produce as vehicle

Food/feed safety partners involved as soon as food is suspected as the vehicle of infection

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology

Page 37 **BFR**

- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Step 6: Test hypotheses

... by using analytical studies to sort out characteristics:

- common to all individuals
- specific to cases
- Typical studies:
 - Case-control
 - Cohort
 - Questionnaires used to collect information on exposure
 - Generate odds and risk ratios
 - Indicating association between disease and exposure
- Remember dead ends → investigation may involve several types of studies

Step 6: Test hypotheses

- Hypothesis testing examples from EHEC, 2011:
 - Initial hypothesis from trawling interviews pointed towards fresh produce
- a. Early case control study in Hamburg, early May
 - Leafy salads, cucumbers and tomatoes associated with disease
- b. Matched case control study in 3 hospitals focussed on fruits and vegetables, May – June 2011

When would you trace what?

Multistate HAV outbreak 2013-2014

Standardization is key!

4.1 FRESH BERRIES:

Q. In the seven weeks prior to your illness, were you likely to have eaten fresh berries either on their own or as a garnish with desserts and salads, these include strawberries, raspberries, blackberries, blueberries, cranberries and also blackcurrants and redcurrants (re-emphasise it is either on their own or as a garnish) Yes No Not sure

If YES, which of the following fresh berries were you likely to eat?

(Please go through each of the items listed; if respondent answered "No" or "Not sure" above, go through each of the items listed to verify this is definitely the situation)

				If yes, how often (frequency)									
Fresh Berries/Curra nts	Yes	No	Not sure	5 or more times/ week	3-4 times/ week	1-2 times/w eek	2-3 times/m onth	Once/m onth	Once in the 7 week period	Never	Don't remember	Place of Purchase (name and location of shop, supermarket, café, restaurant, market etc. where fruit purchased)	Brand
Strawberries													
Raspberries													
Blackberries													
Blueberries													
Cranberries													
Blackcurrants													
Redcurrants													
Other, specify													
Notes:													

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology
- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Step 7: Draw conclusions

Interpreting example from EHEC, 2011:

b. Matched case control study in 3 hospitals focussed on fruits and vegetables, May – June 2011

Table 1. Vegetables or Fruits Evaluated in a Case–Control Study	
n the German Outbreak.*	

Food Item	Case Subjects Exposed	Control Subjects Exposed	Matched Odds Ratio (95% CI)	P Value
	no./tot			
Sprouts	6/24 (25)	7/80 (9)	4.35 (1.05–18.0)	0.04
Cucumbers	22/25 (88)	52/79 (66)	3.53 (0.96–12.9)	0.06
Apples	22/24 (92)	57/81 (70)	3.91 (0.86–17.7)	0.08
Peppers	16/24 (67)	35/80 (44)	2.66 (0.90–7.9)	0.08
Strawberries	19/26 (73)	43/81 (53)	2.33 (0.90–6.0)	0.08

What food item would you like to trace?

Katja Alt, Baltic Countries 2016, Crisis preparedness 03.14 – 17.2015

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology
- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Step 7: further investigations

- To support evidence
- Microbiological
 - Typing (MLST, PFGE, MLVA, ...)
 - Identical isolates among cases
 - Identical isolates in source and case
- Other studies
 - Environmental
 - e.g., test the water

- Food (and feed) tracing

• Will be subject of the next few hours

- 1. Confirm the outbreak
- 2. Confirm the diagnosis
- 3. Define a case
- 4. Search for cases
- 5. Generate hypotheses
- 6. Test hypotheses using analytical epidemiology
- 7. Draw conclusions
- 8. Conduct additional investigations
- 9. Communicate findings
- 10. Implement prevention measures

Will be subject of the following 2 days!

Bundesinstitut für Risikobewertung

Thank you!

Katja, Armin & Olaf