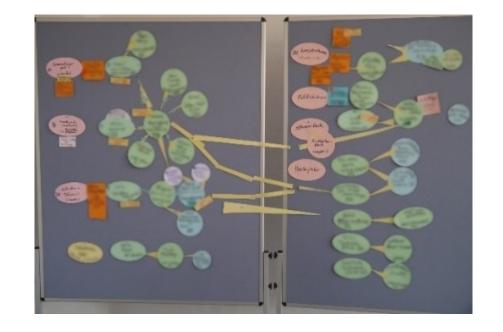
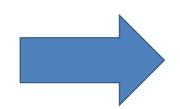


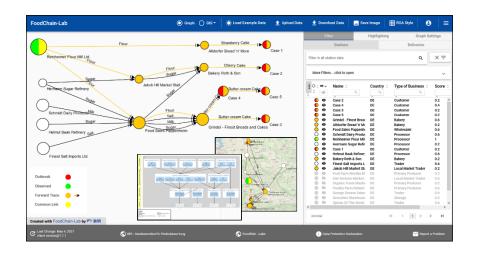
How data harmonization and data classification foster interoperability and data sharing

Olaf MOSBACH-SCHULZ (EFSA)

European Food Safety Authority (EFSA)
Methodological and Scientific Support Unit (MESE)


Disclaimer


The presentation was drafted under the sole responsibility of the authors and is not considered as an EFSA output.


The positions and opinions presented are those of the author alone and are not intended to represent the views of EFSA.

Understanding Reconstructing the Food Supply Chain

2011

2025

Five challenges to address in 2025

- 1. Increase of convenience food
- 2. Specialisation of production steps
- 3. Forced economic competition
- 4. Increase of disruptions
- 5. Information flooding

Conclusion

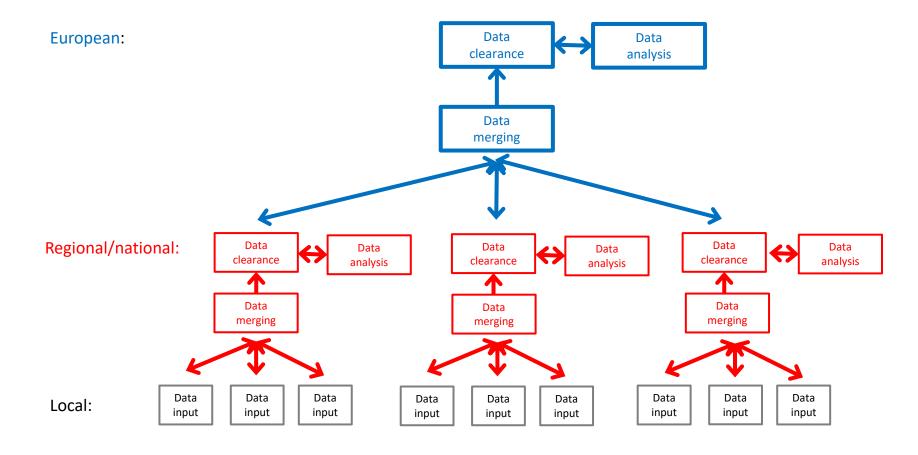
Need for

- Faster data collection
- Better data exchange
- Data analysis on growing data sets

thus...

We have to move

- From an adjusted data collection to a common (distributed) dataset
- From a task of an individual institution to a common group exercise
- From a single solution to an ecosystem of several tools
- From the isolated incident to a system analysis



Universal Traceability data eXchange

Information workflow of tracing

Similar tasks on regional, national, and European level

Actors

Communication

European Commission Regional & national authorities Local inspectors / Food business operators

Similar tasks on regional, national, and European level

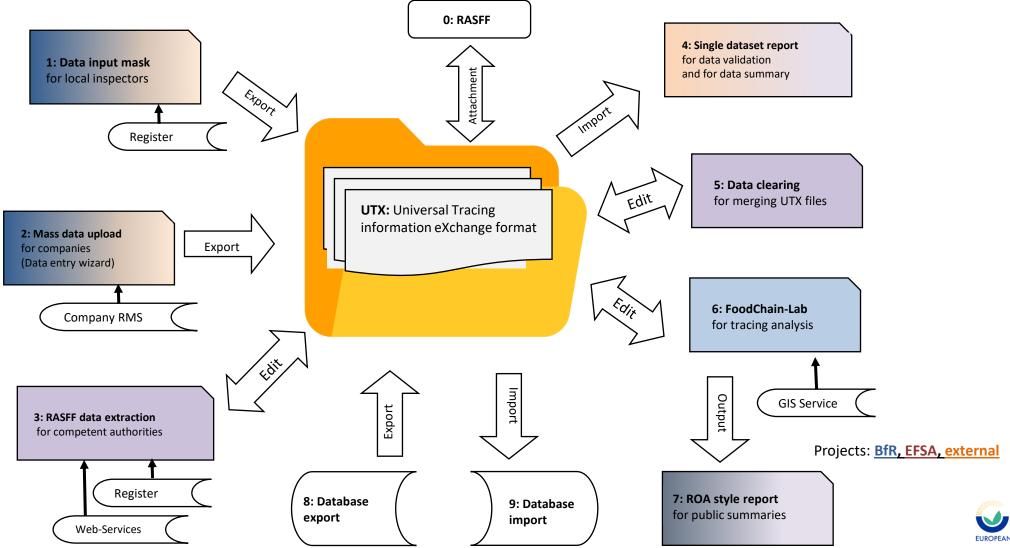
Similar standards:

For data collection (WHAT?)

For data classification (HOW?)

For data exchange (WHICH FORMAT?)

Similar tools:

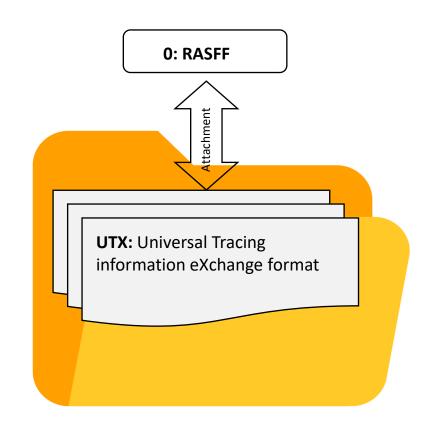

For data input, e.g. consistency check

For data clearance, e.g. conflict solving

For data analysis, e.g. reporting, FCL

Similar standards: UTX

Data exchange


All exchange of tracing data will be made via attachments within the RASFF system:

Structured data in json format (UTX file)

Initial, additional and summary files

Versioning of information

Possibility to combine several RASFF notifications, e.g. outbreaks of similar genotype of the past

UTX main principles

Shareable

Structured

Lightweight

Open

Transparent

Main principle: Shareable

- UTX serves tracing of items in the food and feed supply chain
- UTX allows co-working with several tools
- UTX parameters and their formats are interoperable to existing tracing systems on European, national, commercial, or food area specific level.
- UTX uses existing standards for tracing
- UTX contains clear-text, as xml or json
- UTX has no data protection

Main principle: Structured

- UTX is organised in core tables
- UTX core tables are:
 - Investigation to collect information
 - Product under investigation
 - Station in the supply chain
 - Activity in the supply chain
- UTX core tables are interoperable
- UTX core tables have hierarchical sub-tables (1:n relations):
 e.g. Product → Lot → Tracing unit (TRU)

Main principle: Lightweight

- UTX stores information on highest level:
 - e.g. Product: "Band name=Coca Cola"
 - e.g. Lot: "Expiry date=31/01/2023"
 - e.g. TRU: "Package unit=1 litre(bottle)"
- UTX uses relations between tables
- UTX stores all necessary information to perform a tracing exercise (minimal requirement of information)
- UTX can store all available information, which is collected during an investigation (maximal extent of information)

Main principle: Open

UTX specifications are freely accessible

requires information on different levels:

- mandatory → rejection when missing
- recommended → warning when missing
- optional → no action when missing

UTX allows tool specific extensions

UTX can contain extra-core tables

- managed only by specific applications
- non standardised

UTX supports different languages

uses codes, if possible

Main principle: Transparent

UTX table entries are linked to an information source

UTX allows merging of files

double entries will be cleaned additional information will be merged conflicting information will be solved

UTX records all actions on entry

data input, merging, changes includes versioning of entries

Data collection tool

UTX will be provided with a specific editor for the end user

The UTX editor has two access modes:

- Read-only → free access
- Editing → information source needed
 - Open a specific entry for editing
 - Submit changes

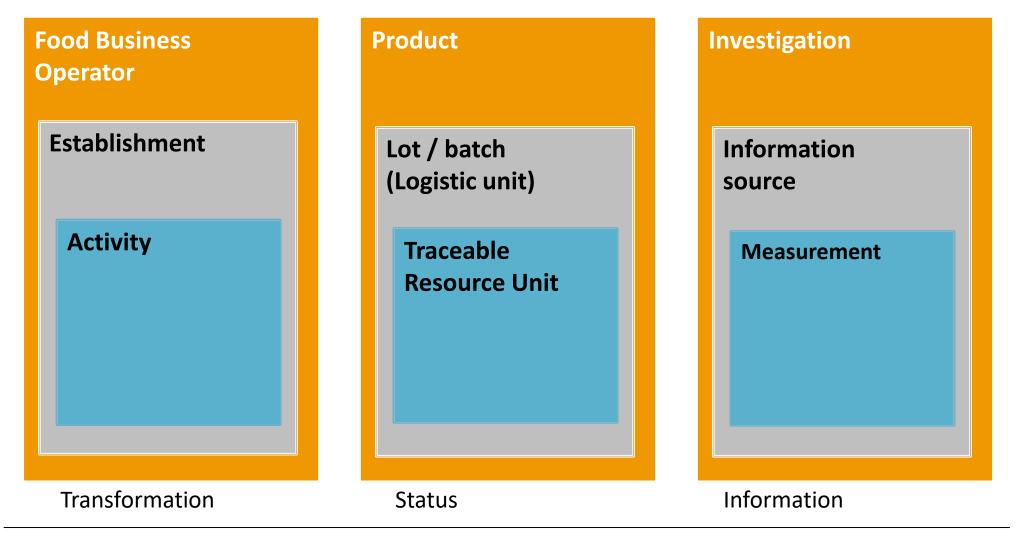
Data Input Mask

Data Collection VS. Data Extraction

Data collection:

- Targeted data retrieval
- Minimal set of required information
- Correct data format
- On-side data validation

Guided data collection


Data extraction:

- Use of secondary data
- Minimal rejection of information
- Missing information
- Substitute information
- Conflicting information

Guided data extraction

Revised Data Structure: 9 tables

First main table: Transformation

Station hierarchy:

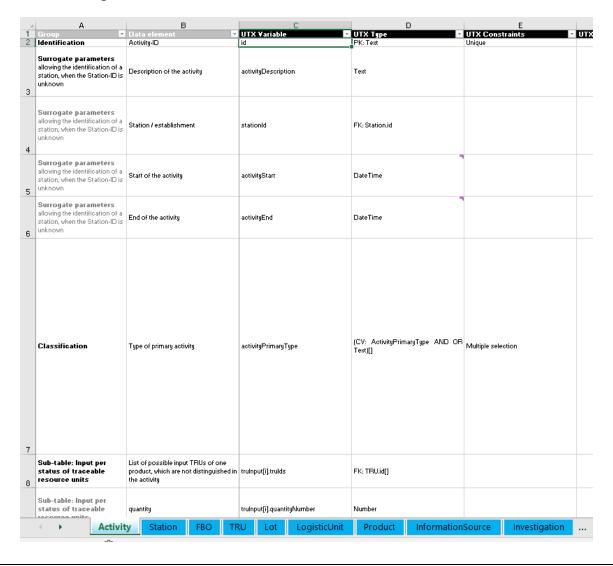
- FBO: Administration responsible for the activity, e.g. company headquarter
- <u>Station:</u> Establishment, where the activity is performed, e.g. production site, production line. In case of transportation this could be a lorry or a container.

Activity (no hierarchy): Any action changing the status of an item in the food supply chain, e.g. processing, transport, storage, retail. Trading is considered as activity as it is changing the owner (FBO) of the item.

Second main table: Status

Product hierarchy:

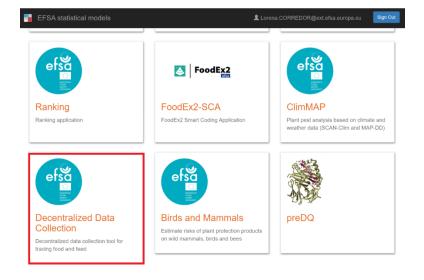
- Product: Description of the kind of item in the food supply chain
- Lot: Description of the production process of the item. As special case a logistic unit is counted as lot (collation of items for the purpose of transport)
- TRU: Entity of a lot/item


Third main table: Information

Information hierarchy:

- <u>Investigation</u>: Description of a collection of information sources, e.g. an investigation (RASFF notification), a register of companies
- <u>Information source:</u> Description of the source of information included in the UTX file, e.g. an inspection (investigation job), a document, a decision/change/ correction (in case of data cleaning)
- Measurement: All additional information on the status of a TRU, which is not added in other tables (not necessary for tracing), e.g. measurements of contaminations, temperature etc.

Detailed UTX description



Data Collection tool within the r4eu platform

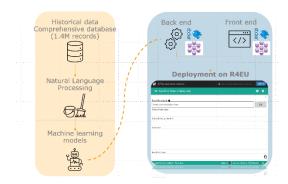
Easy-to-use data collection

Users: MSs and EFSA

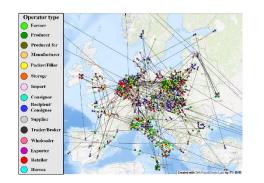
The tool:

- will replace the existing data extractions forms **by a relational database**, resolving most issues of data cleaning and consistency checks
- will work directly on the "Universal Tracing eXchange" (UTX) format to make data extraction interoperable
- will be able to **directly interchange with FCL software via UTX**, enabling EFSA to perform rapid analyses to identify the source of contamination; incl. full documentation.

Food Classification



Adoption of existing standards: existing tools



EFSA catalogues

Standard Sample Description 2.0 (SSD2)

International standards

FoodEx2 Smart Coding Application (SCA)

Rapid Alert Supply Network Extractor (RASNEX)

Criteria for the classification system

- Automatic minimizing of errors
- Automatic categorisation of food
- Automatic connection of relations
- Automatic collection of one step forward / one step backwards traceability

Coding example: Case / Client

The case reports:

"Capuccino with oat milk and sugar"

FoodEx2: A068Y "Hot drinks or similar"

Coding example: Coffee bar

The bar reports the recipe:

A068Y

Boiling: #F28.A07GL

Drinking water: \$F04.A03DK

Coffee ground: \$F04.A03GN

Oat milk: \$F04.A03TL Producer: "Oatly"

White sugar: \$F04.A032J

Total code: A068Y(#F28.A07GL

\$F04.A03DK\$F04.A03GN\$F04.A03TL\$F04.A032J)

Coding example: Producer "Oatly"

The producer reports the process, ingredients, and package:

A03TL

Milling: #F28.A0C03

Drinking water: \$F04.A03DK

Oat grain: \$F04.A000G


Rape seed oil: \$F04.A036V

Salt: \$F04.A042P

Vitamin B12: \$F04.A0EXP

Regulator (dipotassium phosphate): \$F04.A048C

Laminate: \$F19.A07PS

Coding example: Tracing code

Total code:

A068Y	(#F28.A07GL		
	\$F04.A03DK	\$F04.A03GN	\$F04.A03TL
			(#F28.A0C03
			\$F04.A03DK\$F04.A000G\$F04.A036V\$F04.A042P
			\$F04.A042P\$F04.A0EXP\$F04.A048C\$F19.A07PS)
	\$F04.A032J)		

The initial code "A068Y" is twice enriched by the actual recipe of the bar and the producer.

Enrichment will be done by the tracing software, when additional information is available.

Advantages

- Automatic minimizing of errors
- Automatic categorisation of food
- Automatic connection of relations
- Automatic collection of one step forward / one step backwards traceability

- → Known taxonomy
- → FoodEx2 tools available
- → Integrated relations (Fazets)
- → Integrated enrichment

One concept for the full food chain (primary to complex products)

Inclusion of processing

Inclusion of additives, service materials, packaging

European Food Safety Authority (EFSA)
Methodology and Scientific Support Unit (MESE)
Olaf Mosbach-Schulz

olaf.mosbach-schulz@efsa.europa.eu

