AI-Trainings

Training course (Titel)ContentProvider
Online-Workshop

Technisches KI-Testing: Testmetriken, -verfahren und –prozesse zur Bewertung von KI-Systemen
26. Februar 2025 von 15:00 bis 16:30 Uhr;

Der Workshop bietet einen Überblick über die besonderen Anforderungen bei der Bewertung von KI-Systemen. Referentin Anita Klingel behandelt Unterschiede zwischen klassischen Softwaretests und KI-Testmethoden, den Aufbau eines Testkonzepts sowie technische und soziotechnische Testmethoden. Zudem werden Metriken, Thresholds und Benchmarks diskutiert. Der Workshop richtet sich an technisch orientierte Mitarbeitende und bietet Raum für fachlichen Austausch.
KIDA - AI for Food and Agriculture
Online-Workshop

Anwenderzentriertes KI-Testing: Quantitative und qualitative Methoden für User-Tests
27. Februar 2025 von 15:00 bis 16:30 Uhr;

Der Workshop richtet sich an Mitarbeitende, die KI-Anwendungen mit Nutzenden testen möchten. Referentin Anita Klingel behandelt die Unterschiede zwischen technischen und User-Tests, die Auswahl geeigneter Testverfahren, die Auswertung qualitativer Ergebnisse, mögliche Biases sowie Kommunikation und Change Management. Zudem gibt es Raum für Fragen und fachlichen Austausch.
KIDA - AI for Food and Agriculture
Online-Fachvortrag

Künstliche Intelligenz in der Verwaltung
05. März 2025, 10:00 bis 11:00 Uhr;

In diesem Fachvortrag werden Ihnen Karen Toppe und Mirjam Andriopoulos das im Aufbau befindliche Beratungszentrum für Künstliche Intelligenz (BeKI) in der Bundesverwaltung vorstellen. Unter anderem werden sie Einblicke in den Marktplatz der KI-Möglichkeiten (MaKI) geben, einem zentralen Projekt des BeKI, das die erste Produktversion einer Matchingplattform und Transparenzdatenbank für KI-Systeme der Bundesverwaltung darstellt. Darüber hinaus werden sie die ressortübergreifenden KI-Leitlinien und die Auswirkungen für die Bundesverwaltung vorstellen. Dr. Micha Schneider wird Ihnen konkrete Anwendungsmöglichkeiten von KI in der Verwaltung präsentieren.
KIDA - AI for Food and Agriculture
Schulungsangebot

Deep Learning Bootcamp: Building and Deploying AI Models
20.-21. März 2025;

Das KI-Servicezentrum für sensible und kritische Infrastrukturen (KISSKI) bietet ein Schulungsangebot rund um das Thema KI für die Nutzenden von KISSKI. Hierbei geht es um die Einführung in neuronale Netze, Modellbildung mit PyTorch und Einsatz von KI-Modellen.
KISSKI - KI-Servicezentrum für sensible und kritische Infrastrukturen
Online-Fachvortrag

Green AI & Green by AI
26. März 2025 von 10:00 bis 11:00 Uhr;

Frau Marina Köhn (UBA) gibt eine Einführung in Green AI. Anschließend stellt Prof. Dr.-Ing. Dartmann (Hochschule Trier) zwei Forschungsprojekte vor. GreenTwin nutzt KI zur nachhaltigen Logistik im ländlichen Raum und reduziert CO₂-Emissionen durch eine KI-gestützte Marktplatzplattform und digitale Zwillinge. KIRA optimiert die Ressourceneffizienz von KI-Systemen, indem es den Energie- und Materialverbrauch im gesamten KI-Lebenszyklus analysiert und minimiert. Prof. Dr.-Ing. Dartmann ist Professor für Umweltplanung und leitet den Studiengang Angewandte Informatik & KI.
KIDA - AI for Food and Agriculture
Online-Workshop

AI-based autonomous agents - What, why and how?
April 7, 2025, 9:00 a.m. - 12:30 a.m.

Dr. Iurii Savvateev (BfR) will present a workshop on LLM-based autonomous agents, covering theoretical foundations, frameworks (e.g., Langchain, Langflow), practical use cases, challenges, and limitations. The session includes discussions on applications in research and workflows, aimed at those integrating LLMs (e.g., GPT, DeepSeek, Gemini) or exploring new AI advancements.
KIDA - AI for Food and Agriculture
Online-Fachvortrag

Artificial intelligence for smart agriculture
April 8, 2025, 10:00 a.m. - 11:00 a.m.

Prof. Dr. Masahiro Ryo (BTU/ZALF) will explore how foundation models can enhance predictive capabilities in agriculture. Stefan Stiller (ZALF/BTU) will present his research on crop yield prediction using RGB drone imagery and self-supervised learning, highlighting its advantages over conventional CNNs.
KIDA - AI for Food and Agriculture
KIDA-KON 2025 17.-18. September 2025, Thünen-Institut Braunschweig

Die KIDA-KON thematisiert KI-Anwendungen in Landwirtschaft, Lebensmittel- und Umweltforschung sowie angrenzende Bereiche wie Green AI, regulatorische Fragen (AI Act), KI in Bildung und interdisziplinäre Ansätze. Ziel ist der Austausch zwischen Wissenschaft und Behörden zu Chancen und Herausforderungen von KI in der Agrifood-Forschung. Nachwuchswissenschaftler:innen erhalten die Möglichkeit, ihre Arbeiten zu präsentieren und sich zu vernetzen. Die Konferenz wird im Forum am Thünen-Institut in Braunschweig stattfinden.
KIDA - AI for Food and Agriculture
KI-PODCAST

Anatomie eines Hypes - Wie kam es zu DeepSeeks ChatGPT-Moment?
Jederzeit anhörbar

Gregor Schmalzried, freier Tech-Journalist, Speaker und Berater, und Fritz Espenlaub, freier Journalist und Ökonom, nehmen im KI-Podcast des BR den Hype um das Modell des chinesischen KI-Startups DeepSeek unter die Lupe. Sie fragen nach dem Auslöser hinter der (Börsen-)Panik rund um das chinesische Sprachmodell. Außerdem berichten sie in der Folge über die ersten Auswirkungen des EU AI Acts.
ARD Audiothek
Elements of AIDer Online-Kurs Elements of AI bietet leicht verständliche KI-Grundlagen mit praktischen Übungen. Keine Vorkenntnisse nötig. Entwickelt von Reaktor und der Universität Helsinki, wird die deutsche Version von DIHK-Bildungs-GmbH und dem BMWi unterstützt.University of Helsinki, Reaktor Education
Künstliche Intelligenz und maschinelles Lernen für EinsteigerDer openHPI-Kurs für Einsteiger demystifiziert KI und maschinelles Lernen. Zielgruppe sind Laien. Kursleiter Hötter und Warmuth erklären die Grundlagen und verschiedene Lernmethoden anhand von Beispielen. Der Kurs endet mit einem Blick auf ethische und technische Grenzen. Python-Programmierung ist nicht Teil des Kurses.OpenHPI
KI und Datenqualität - Perspektiven aus Data Science, Ethik, Normung und Recht
Künstliche Intelligenz, besonders neuronale Netze, benötigt qualitativ hochwertige Trainingsdaten. Die Datenqualität umfasst informatische, juristische und ethische Aspekte. Fehlende oder fehlerhafte Daten können zu unsicheren KI-Modellen führen. Der Kurs "KI und Datenqualität" behandelt diese Themen im Kontext des KITQAR Projekts.OpenHPI
Foundations of Artificial Intelligence IThe course "Foundations of Artificial Intelligence I" delves into the concept of the rational agent in AI. It begins with Alan Turing's inquiry into machine intelligence, explores symbolic and subsymbolic AI, and reviews the Turing test. The course also examines agent properties, environments, and various agent architectures.KI-Campus
Foundations of Artificial Intelligence IIThe course "Foundations of Artificial Intelligence II" covers key search algorithms in AI, blending theory with practical examples. It is structured into three modules focusing on systematic search algorithms, heuristic search, and local and stochastic search methods.KI-Campus
Foundations of Artificial Intelligence IIIThe course "Foundations of Artificial Intelligence III" delves into mathematical logic and satisfiability checking, covering propositional and first-order logic, their syntax, semantics, and related algorithms like the DPLL. It emphasizes the use of modern Satisfiability (SAT) solvers in AI and sets the theoretical groundwork for subsequent courses on Knowledge Representation and Constraint Optimization.KI-Campus
Foundations of Artificial Intelligence IVThe "Foundations of Artificial Intelligence IV" course delves into conceptual knowledge representation using ontologies, particularly with languages like OWL rooted in AI's description logics. It covers knowledge types, the history of AI knowledge representation, and specifics like ALC logic and web ontologies. The course wraps up discussing challenges in non-monotonic reasoning and handling exceptions.KI-Campus
Foundations of Artificial Intelligence VThe "Foundations of Artificial Intelligence V" course explores constraint programming, emphasizing the fusion of CP and SAT in efficient CP-SAT solvers. It showcases problem modeling with MiniZinc and integrates knowledge from prior courses, supplemented with examples.KI-Campus
Daten- und Algorithmenethik
Grundlagen der Daten- und Algorithmenethik, Überblick über kulturell geprägte Moraltheorien, aktuelle KI-Anwendungen und ethische Ansätze, sowie integrierte Ethik-Spiele zur Veranschaulichung.KI-Campus
Data Literacy – Daten interpretieren durch Data MiningData Mining nutzt große Datenmengen, um Zusammenhänge zu erkennen und Vorhersagen zu treffen. Der TH Köln Kurs führt in selbstlernende Algorithmen ein, die in Jupyter Notebooks an echten Daten getestet werden können. Dabei werden alle Schritte eines Projekts, wichtige Algorithmen und deren Grenzen, sowohl fachlich als auch ethisch, behandelt.KI-Campus / TH Köln
Natural Language ProcessingThe "Natural Language Processing" course by the German Research Center for Artificial Intelligence and Technische Universität Berlin delves into machine learning-based language processing. It covers basic NLP concepts, practical tasks like text classification, and development using Python. The course also functions as a self-study MOOC for universities.KI-Campus / Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
AutoML - Automated Machine Learning
The "Automated Machine Learning" course teaches future ML developers to efficiently design ML pipelines, including hyperparameters and neural network architectures. It can be taken as a MOOC or in a blended learning format by universities.KI-Campus
Künstliche Intelligenz und Maschinelles Lernen in der PraxisNach dem Grundkurs zu KI und Maschinellem Lernen fokussiert der Folgekurs auf die praktische Anwendung realer Datenprojekte unter Leitung von Johannes Hötter und Christian Warmuth. Es werden alle Schritte eines datengetriebenen Projekts behandelt, mit vier Wochenprojekten wie Wohnungspreisvorhersage und Gebärdensprache-Erkennung. Vorwissen aus dem Einstiegskurs ist erforderlich.OpenHPI
Building Visual Machine Learning ModelsIf you seek hands-on Machine Learning experience without programming, this course is for you. Dive into building ML models using a user-friendly graphical tool, understand model mechanics, and grasp the ML project lifecycle. Optionally, transition your knowledge to Python programming by the course's end.KI Campus / DHBW Stuttgart
AMALEA – Angewandte Machine-Learning-AlgorithmenDer Kurs bietet eine Einführung in Machine Learning und praktische Anwendung mittels Python. Sie werden verschiedene ML-Verfahren wie Neuronale Netze und Random Forests in realen Szenarien mittels des QUA³CK-Prozesses und Frameworks wie Keras und Jupyter Notebook anwenden.KI Campus / KIT
AutoML - Automated Machine LearningThe "Automated Machine Learning" course delves into designing efficient ML pipelines, focusing on hyperparameters and neural network architectures. It covers topics like Hyperparameter Optimization, Neural Architecture Search, and various AutoML optimization methods. The course is suitable as a MOOC or a blended learning format.KI Campus
Machine Learning for allMachine learning is reshaping various aspects of our lives through its core principle: training algorithms using data. While AI advancements may seem futuristic, they stem from this foundational concept.University of London
Building AI "Building AI" is a flexible online course offering insights into practical AI methods, including machine learning and neural networks. Tailor your learning experience from multiple-choice exercises to Python programming based on your expertise. Complete the course for free, craft an AI idea, and optionally purchase a certificate.University of Helsinki, Reaktor Education
KI und Leadership - Mikrokurs In diesem kompakten Mikrokurs zu "KI & Leadership" erhalten Sie einen schnellen Einstieg in die Relevanz von Künstlicher Intelligenz für Führungskräfte. Sie lernen zentrale Begriffe wie Algorithmen und Advanced Learning kennen und erkunden den Mehrwert von KI in der Führung und Weiterbildung. Zudem werden ethische Aspekte und Datenschutz im Kontext von KI beleuchtet.KI-Campus / Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
KI und LeadershipDer Kurs „KI und Leadership“ richtet sich an Führungskräfte und Interessierte, um die Vorteile und Implementierung von KI-Technologien im Führungskontext zu verstehen. Er vermittelt Kenntnisse über den Einsatz digitaler Medien und KI-Systeme in der Personalführung, wobei Ethik und Datenschutz im Vordergrund stehen. Die Inhalte reichen von Leadership und KI-Grundlagen über Ethik bis hin zu Führungsstilen und Technologietransfer.KI-Campus / Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Webinar: Sharing and Deploying Data Science with KNIME ServerThe content of the training likely covers the features and functionalities of the KNIME Server, with a focus on how it supports collaborative work and automation of data science workflows.KNIMETV
NVIDIA Deep Learning Institute (DLI)Self-paced training courses covering various topics related to deep learning and accelerated computing.The NVIDIA Deep Learning Institute (DLI)
Semantic Web Technologies - openHPIThe course covers topics related to the Semantic Web, including knowledge representation, querying, and applications in the Web of Data.openHPI
KI WissenpoolWelche Funktionen kann KI künftig in Unternehmen übernehmen, um Prozesse zu optimieren und Mitarbeiter:innen zu entlasten? Damit aus einem „use case“ ein „business case“ wird, braucht es das passgenaue Wissen zur KI und zu ihrem Anwendungsfeld. Auf dieser Seite finden Sie konkrete Anwendungsbeispiele von und Wissenswertes zu KI in kleinen und mittleren Unternehmen.KI Wissens- und Weiterbildungszentrum
UdemyOnline-Lernplatform mit über 210.000 breit gefächerten Auswahl von Online-VideokursenUdemy
ChatGPT Prompt Engineering for DevelopersThe course covers the use of large language models (LLMs), best practices for prompt engineering, and practical applications of LLM APIs for tasks such as summarizing, inferring, and text transformation.DeepLearning.AI
DeepLearning.AI CoursesThe courses cover a range of AI specializations, including machine learning, deep learning, natural language processing, and AI for medicine.DeepLearning.AI
DeepLearning.AI Short CoursesThe courses focus on enhancing generative AI skills and cover topics such as prompt engineering, building systems with the ChatGPT API, LangChain for LLM application development, and fine-tuning large language models.DeepLearning.AI.
KIDA-KompetenzgemeinschaftThe webpage titled "KIDA-Kompetenzgemeinschaft" is part of the KIDA initiative. One of the primary objectives of KIDA is to establish a cross-institutional community for knowledge building and exchange related to AI and data. They are currently developing a platform for networking, further education, and knowledge management. Members of the KIDA community gain access to a private section on the website, where they can find video recordings of lectures and soon, information on further training opportunities. The community aims to benefit from a broad spectrum of knowledge and experiences related to AI and data, allowing members to grow together in an inspiring environment. Additionally, there's a newsletter that provides regular updates on events, training, and networking opportunities related to AI and data within the KIDA framework.KIDA - AI for Food and Agriculture
Deep Learning Essentials - edXThis course is offered by the Université de Montréal on edX and provides an in-depth overview of deep learning fundamentals. Created in collaboration with Mila and IVADO, the course covers the basics of deep learning, types of neural networks, and hands-on experience with deep learning libraries. Yoshua Bengio, a renowned AI expert and a 2018 A.M. Turing Award recipient, is the scientific director of the course. Designed for professionals with a basic understanding of mathematics and programming, the course spans 5 weeks and requires 4-6 hours of study per week.Université de Montréal in collaboration with Mila and IVADO
Databricks Large Language Models Professional Certificate – edXprofessional certificate program, offered on edX in collaboration with Databricks, delves into the world of Large Language Models (LLMs). The program aims to equip learners with the skills to build, deploy, and scale LLMs using the Databricks platform. It covers foundational concepts, practical applications, and the ethical considerations of LLMs. The course is designed for data scientists, machine learning engineers, and other professionals looking to harness the power of LLMs in their work. The program's content is structured to provide both theoretical knowledge and hands-on experience.edX in collaboration with Databricks.
Large Language Models with Semantic SearchThe webpage titled "Large Language Models with Semantic Search" is a new course offered by DeepLearning.AI in collaboration with Cohere. The course, designed for beginners, is approximately 1 hour long and is instructed by Jay Alammar and Luis Serrano. The course aims to enhance the traditional keyword search by incorporating large language models (LLMs) to improve the user experience. Participants will learn about dense retrieval, which improves the relevance of search results, and reranking, which enhances search systems using LLM intelligence. By the end of the course, learners will be able to implement LLM-powered search into their projects and understand the basics of keyword search, reranking, and dense retrieval using embeddings. The course is currently free for a limited time during the DeepLearning.AI learning platform beta phase.DeepLearning.AI in collaboration with Cohere
Learning Materials by HIFISHIFIs offers a variety of learning materials related to software engineering and the use of cloud services. They also provide an overview of workshops that teach foundational software engineering skills. The workshop materials are available for self-guided learning or can be used as a foundation for personal workshops. These materials are available under a Creative Commons License. Topics covered include research software publication, container virtualization in science, event management with Indico, Python programming, Git and GitLab usage, and more. Additionally, they offer further materials, tutorials, and guidelines on various topics. Those interested in specific workshops for their teams can contact HIFIS directlyHIFIS
KNIME L4 Deep Learning ExamKNIME has introduced the L4-DL exam, which focuses on deep learning. Deep learning, a subset of machine learning, powers many AI applications. Over the years, deep learning architectures have evolved significantly, with advancements like RNNs with LSTM units, CNNs, autoencoders, and GANs. There's a misconception that building deep learning applications requires complex coding. However, tools like the KNIME Analytics Platform offer a no-code/low-code approach to deep learning. KNIME's L4-DL self-paced course teaches codeless deep learning, and the new L4-Deep Learning certification exam allows learners to validate their knowledge. The exam was crafted in collaboration with experts from Reichman University, Ben-Gurion University of the Negev, and KNIME. The certification is suitable for anyone, provided they have passed the L1-L3 certification exams. Upon passing the L4-DL exam, participants receive a badge showcasing their deep learning expertiseKNIME: Open for Innovation
AI FireAI Fire offers a comprehensive collection of AI learning resources. This platform provides a wide range of materials, including cheat sheets, AI courses, prompt engineering tutorials, and moreAI Fire
Data Week Leipzig 2024Data Utilization, FAIR Principles, Semantics, and AIData Week Leipzig